
Understanding Congestion in High Performance Interconnection
Networks Using Sampling

Philip Taffet, John Mellor-Crummey

Goal: Enable tools that help developers analyze and tune the communication
performance of their applications

Use a novel sampling method to capture information about where, when, and why
congestion is occurring.

This sampling-based technique collects information about the path a packet takes and
congestion it encounters. This strategy can distinguish problems with:
• an application’s communication patterns,
• its mapping onto a parallel system,
• and outside interference.

A variant of this scheme requires only 5-6 bits of information in a monitored packet,
making it practical for next-generation networks.

Abstract

Probabilistic Encoding of Network Traffic
High Level Idea

Let 𝐻 be a hash function that returns 1 bit
Replace main algorithm and packet with:

Replace reconstruction step with :

Simulation Case Study with pF3D
• pF3D is a laser-plasma interaction multi-physics code from LLNL.
• Under heavy background congestion, pF3D’s parallel FFTs run 24% slower.
• The section takes 24.6s with no congestion and 30.4s with heavy background congestion.
• Can we understand why? Can we improve the performance?

• Links from leaf switches to 2nd level switches are dark and thin
• High congested fraction but low traffic

• pF3D drives an average of 2.0 Gbps per link
• Congestion must be due to background traffic

If we assume the external interference will remain constant, we can also look for a second diagnosis.

• Root is in network interior
• Try to solve congestion with mapping
• In particular, we need a mapping that reduces traffic entering circled switches

• On this problem size, much of pF3D’s communication occurs in 4-node groups
• By shifting the node numbering, we prevent groups from communicating over congested links.

We compare the mappings by representing each group of 4 nodes by a different colored rectangle

Analysis
Fix a link ID 𝑑. Packet 𝑖 contains H(packet IDi , 𝑑𝑖). For analysis, split the packets into three groups:
Packets where 𝑑 = 𝑑𝑖, so H(packet IDi , 𝑑) = H(packet IDi , 𝑑𝑖).

Packet would have contained 𝑑 if non-probabilistic
+1 for each of these

Packets where 𝑑 ≠ 𝑑𝑖, but H(packet IDi , 𝑑) = H(packet IDi , 𝑑𝑖).
Packet would not have contained 𝑑 if non-probabilistic
+1 for each of these

Packets where 𝑑 ≠ 𝑑𝑖, and H(packet IDi , 𝑑) ≠ H(packet IDi , 𝑑𝑖).
Packet would not have contained 𝑑 if non-probabilistic
-1 for each of these

We can’t distinguish group I and II, but group II cancels out group III
Expected value of count is the number of packets that would have contained 𝑑

Hash Function
We use a hash function based on multiplication in the field GF(2𝑘). This function satisfies the
required properties and is easy to compute in hardware.

Time (s) % difference

Congestion, default mapping 30.40 -

Congestion, shifted mapping 25.50 16.1%

No Congestion 24.60 19.1%

Reservoir Sampling

If 𝑁 packets traverse this path, approximately
𝑁

4
of them have each link ID when they

arrive at Node 99. Thus the NIC’s count for each link ID will be approximately 𝑁, which
reflects the fact that 𝑁 packets passed through the link.

We aggregate these counts from all nodes and compute for each link
congested fraction = congested count traffic count

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link: —
Congested?: NO
Hop count: 2

Packet Data

Packet

2

Node 0 Node 99

Switch 3Switch 1

Switch 2

!

!

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link: —
Congested?: YES
Hop count: 4

Packet Data

5
Node 99

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link: —
Congested?: NO
Hop count: 1

Packet Data

Packet

1

Node 0 Node 99

Switch 3Switch 1

Switch 2

!

!

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link: —
Congested?: YES
Hop count: 3

Packet Data

!
Packet

3

Node 0 Node 99

Switch 3Switch 1

Switch 2

!

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link: —
Congested?: YES
Hop count: 4

Packet Data

Packet

4

Node 0 Node 99

Switch 3Switch 1

Switch 2

!

!

Link Traffic
Count

Congested
Count

+4 +4

Packet

As the packet leaves
Switch 1:

Switch 1 updates:
Hop count ← 2
With probability 1 2 :

Link ← Black
Congested? ← Yes

In this example, the
random choice was not to
update at this hop.

When creating the
packet:

Node 0 initializes:
Hop count ← 1
Link ← Green
Congested? ← No

Hop count ← Hop count + 1
With probability 1 𝐻𝑜𝑝 𝑐𝑜𝑢𝑛𝑡 :

Link ← link ID of outgoing link
Congested? ← is outgoing link congested

As the packet leaves
Switch 2:

Switch 2 updates:
Hop count ← 3
With probability 1 3 :

Link ← Blue
Congested? ← Yes

As the packet leaves
Switch 3:

Switch 3 updates:
Hop count ← 4
With probability 1 4 :

Link ← Gold
Congested? ← No

In this example, the
random choice was not
to update at this hop.

When the packet arrives:
Node 99 updates:
Δ = Hop count
TrafficCount[Link] += Δ
If Congested?

CongestedCount[Link] += Δ

Thicker = More traffic
Darker = More congested

Top half of edge
corresponds to down-
pointing link

Links to compute nodes
shown as boxes:

Congested Fraction Plots
By plotting the congested fraction for each link on, we can understand network
congestion visually. We can interpret these diagrams to diagnose the type of problem.

Link Congested
fraction

1 0.86

2 1.00

3 0.94

4 0.06

1

23

4

Root

Hop count ← Hop count + 1
With probability 1 𝐻𝑜𝑝 𝑐𝑜𝑢𝑛𝑡 :

Link ← 𝐻(packet ID, link ID of outgoing link)
Congested? ← is outgoing link congested

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link hash:

H(packet ID,)
Congested?: NO
Hop count: 1

1 bit

1 bit

3-4 bits

Packet Data

Packet
Source: 0,
Destination: 99, Packet ID,
Other headers

Traffic Sample
Link hash:

0=H(packet ID,)
Congested?: YES
Hop count: 4

Packet Data

5’

Link H(ID,
_)

Traffic
Count

Congested
Count

1 -4 -4

0 +4 +4

0 +4 +4

1 -4 -4

When the packet arrives:
Node 99 updates for each link
that packet could have gone
through:
If H(packet ID, link) == link hash

Δ = hop count
else

Δ = -1* hop count
TrafficCount[link] += Δ
If Congested?

CongestedCount[link] += Δ

Diagnosing the Problem
Congestion often backs up, forming tree-like patterns. We look for the root of the tree.

• Congestion rooted in interior of the network
• May be a problem with the mapping onto the physical network topology
• Try optimizing the mapping

• Congestion rooted at an endpoint
• Communication pattern problem
• Code changes likely needed

• Dark and thin links in the congested fraction plot
• External interference from background traffic

Root of a congestion tree

Application-centric
Storing performance information in packets lets us correlate it back to the application.

For example, unless miniGhost uses a mapping that provides good locality in each grid
dimension, its congestion varies dramatically between different communication phases.
We split data based on MPI tag because phases overlap in time.

LS 0 LS 1 LS 2 LS 3 LS 4 LS 5 LS 0 LS 1 LS 2 LS 3 LS 4 LS 5

Original mapping
Shifted mapping

+𝑥 phase
Good locality
Very little inter-node traffic
Very little congestion

+𝑦 phase
Okay locality
Heavy congestion, but contained to
links to and from compute nodes

+𝑧 phase
Poor locality
Links to 2nd level severely congested
Requires more bisection bandwidth
than tapered network provides

H(14, 1..1024) H(15, 1..1024)

• H is not random, but much easier to compute than a cryptographic hash
• H is balanced between 1 and 0

• False positives and true negatives cancel out
• 𝐻(𝑖𝑑1, 𝑑) and 𝐻(𝑖𝑑2, 𝑑) are uncorrelated

• Counts for one link ID will not bleed into other link IDs.

